Conditional deletion of Krüppel-like factor 4 delays downregulation of smooth muscle cell differentiation markers but accelerates neointimal formation following vascular injury.

نویسندگان

  • Tadashi Yoshida
  • Klaus H Kaestner
  • Gary K Owens
چکیده

Phenotypic switching of smooth muscle cells (SMCs) plays a key role in vascular proliferative diseases. We previously showed that Krüppel-like factor 4 (Klf4) suppressed SMC differentiation markers in cultured SMCs. Here, we derive mice deficient for Klf4 by conditional gene ablation and analyze their vascular phenotype following carotid injury. Klf4 expression was rapidly induced in SMCs of control mice after vascular injury but not in Klf4-deficient mice. Injury-induced repression of SMC differentiation markers was transiently delayed in Klf4-deficient mice. Klf4 mutant mice exhibited enhanced neointimal formation in response to vascular injury caused by increased cellular proliferation in the media but not an altered apoptotic rate. Consistent with these findings, cultured SMCs overexpressing Klf4 showed reduced cellular proliferation, in part, through the induction of the cell cycle inhibitor, p21(WAF1/Cip1) via increased binding of Klf4 and p53 to the p21(WAF1/Cip1) promoter/enhancer. In vivo chromatin immunoprecipitation assays also showed increased Klf4 binding to the promoter/enhancer regions of the p21(WAF1/Cip1) gene and SMC differentiation marker genes following vascular injury. Taken together, we have demonstrated that Klf4 plays a critical role in regulating expression of SMC differentiation markers and proliferation of SMCs in vivo in response to vascular injury.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deletion of Krüppel‐Like Factor 4 in Endothelial and Hematopoietic Cells Enhances Neointimal Formation Following Vascular Injury

BACKGROUND Krüppel-like factor 4 (Klf4) is involved in a variety of cellular functions by activating or repressing the transcription of multiple genes. Results of previous studies showed that tamoxifen-inducible global deletion of the Klf4 gene in mice accelerated neointimal formation following vascular injury, in part via enhanced proliferation of smooth muscle cells (SMCs). Because Klf4 is al...

متن کامل

Deletion of KrppelLike Factor 4 in Endothelial and Hematopoietic Cells Enhances Neointimal Formation Following Vascular Injury

Background-—Kr€uppel-like factor 4 (Klf4) is involved in a variety of cellular functions by activating or repressing the transcription of multiple genes. Results of previous studies showed that tamoxifen-inducible global deletion of the Klf4 gene in mice accelerated neointimal formation following vascular injury, in part via enhanced proliferation of smooth muscle cells (SMCs). Because Klf4 is ...

متن کامل

Smooth Muscle–Selective Inhibition of Nuclear Factor‐κB Attenuates Smooth Muscle Phenotypic Switching and Neointima Formation Following Vascular Injury

BACKGROUND Vascular proliferative diseases such as atherosclerosis are inflammatory disorders involving multiple cell types including macrophages, lymphocytes, endothelial cells, and smooth muscle cells (SMCs). Although activation of the nuclear factor-κB (NF-κB) pathway in vessels has been shown to be critical for the progression of vascular diseases, the cell-autonomous role of NF-κB within S...

متن کامل

Cyclosporine up-regulates Krüppel-like factor-4 (KLF4) in vascular smooth muscle cells and drives phenotypic modulation in vivo.

Cyclosporine A (CSA, calcineurin inhibitor) has been shown to block both vascular smooth muscle cell (VSMC) proliferation in cell culture and vessel neointimal formation following injury in vivo. The purpose of this study was to determine molecular and pathological effects of CSA on VSMCs. Using real-time reverse transcription-polymerase chain reaction, Western blot analysis, and immunofluoresc...

متن کامل

Platelet factor 4 mediates vascular smooth muscle cell injury responses.

Activated platelets release many inflammatory molecules with important roles in accelerating vascular inflammation. Much is known about platelet and platelet-derived mediator interactions with endothelial cells and leukocytes, but few studies have examined the effects of platelets on components of the vascular wall. Vascular smooth muscle cells (VSMCs) undergo phenotypic changes in response to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 102 12  شماره 

صفحات  -

تاریخ انتشار 2008